
1 Method Background

There exist several distinct but mathematically equivalent parameterizations
of NB distributions. Perhaps the most common are: X ∼ NB(ϕ, p), X ∼
NB(ϕ, µ), and X ∼ NB(α, µ). In these formulations, p is the probability of
success in a single trial, µ is the distribution mean, and ϕ and α are different
representations of the dispersion parameter. Throughout this manuscript, we
assume that 0 < p ≤ 1 and µ ≥ 1, and ϕ, α > 0. As the name suggests,
the dispersion parameter describes the spread of the distribution and is related
to the distribution variance through the equation, V ar(X) = µ + µ2ϕ−1. In
addition, ϕ and α are related through the relationship α = ϕ−1 and p and µ are
related through,

p =
ϕ

ϕ+ µ
. (1)

The moment generating function (MGF) of a NB distribution parameterized
in this way is,

MX(t) =
( 1− q

1− qet

)ϕ

,

where

q = 1− p =
µ

ϕ+ µ
. (2)

Due to the assumption of independence, it follows that the MGF of the
convolution Y =

∑n
i=1 Xi of NB r.v.s (Xi) where i = {1, 2, 3, ..., n} is,

MY (t) =

n∏
i=1

( 1− qi
1− qiet

)ϕi

.

The cumulant generating function (CGF) of Y , expressed in terms of ϕ and
q is,

KY (t) = log(MY (t)) =

n∑
i=1

ϕi(log(1− qi)− log(1− qie
t)) (3)

Substituting (1) and (2) into (3) and simplifying yields the CGF used through-
out nbconv,

KY (t) =

n∑
i=1

ϕi(log(ϕi)− log(ϕi + µi(1− et)). (4)

The NB parameterization used in nbconv is the same parameterization used
in R’s stats package, as well as in [1].
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1.1 Furman’s exact method

The PMF derived by Furman is,

P (Y = y) = R

∞∑
k=0

δk
Γ(ϕs + y + k)

Γ(ϕs + k)y!
pϕs+k
1 (1− p1)

y, (5)

where,

R =

n∏
i=1

(qip1
q1pi

)−ϕi

;

δk+1 =
1

k + 1

k+1∑
j=1

iξjδk+1−j , where k = 0, 1, 2, ... and δ0 = 1;

ξj =

n∑
i=1

ϕi(1− q1pi/qip1)
j

j
;

qi = 1− pi;

p1 = max(pi);

q1 = 1− p1;

and

ϕs =

n∑
i=1

ϕi.

Evaluation of this PMF in nbconv, as well as evaluation of the parameters
ξj and δk, are implemented on the log-scale to prevent numeric overflow. Im-
portantly, Furman showed that Y is a mixture NB distribution with parameters
Y ∼ NB(ϕs +K, p1), where K is an integer r.v. with PMF P (K = k) = Rδk
[1]. The shape of K, therefore, largely determines the shape of Y .

1.2 Saddlepoint approximation

The saddlepoint approximation is a convenient way to approximate the PMF
of r.v.s when an exact expression cannot be easily derived or computed. The
saddlepoint approximation requires knowledge of (4), as well as the first two
derivatives thereof. The first two derivatives of (4) are,

K ′
Y (t) =

n∑
i=1

ϕiµie
t

ϕi + µi(1− et)
, (6)
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K ′′
Y (t) =

n∑
i=1

ϕiµie
t(ϕi + µi)

(ϕi + µi(1− et))2
, (7)

The saddlepoint approximation for the PMF of a discrete r.v. [?] is,

p̂(x) =
1√

2πK ′′
Y (t̂)

exp(KY (t̂)− t̂x), (8)

where t̂ = t̂(x) represents the unique solution to

K ′
Y (t̂) = x. (9)

In nbconv, the stats::uniroot() function is used to find the value of t̂
that satisfies (9). In addition, KY (t) only exists when ϕi + µi(1− et) > 0. This
constrains t such that for given vectors of matched µi and ϕi,

t < min log
(ϕi

µi
+ 1

)
.

This is used as the upper boundary when solving (9). As with the evaluation
of (5), evaluation of (8) and (9) is done on the log-scale in nbconv to avoid
numeric overflow.

1.3 Method of moments approximation

The method of moments approximation is the simplest method implemented in
nbconv. It is based on the assumption that, under certain conditions (e.g. when
the variance and/or skew of K is small), Y does not differ substantially from
a NB distribution whose parameters can be derived from the moments of Y .
Setting t = 0 in (6) and (7) yields the first two cumulants of the distribution,
which are equal to the first two central moments. These are,

κ1 = µ̄ =

n∑
i=1

µi, (10)

and

κ2 = σ̄2 =

n∑
i=1

µi +
µ2
i

ϕi
. (11)

Under the assumption that the mean-variance relationship is the same for
the convolution of NB r.v.s as it is for non-convoluted NB r.v.s, an expression
for the estimation of the dispersion parameter can be derived by combining (10)
and (11),

ϕ̄ =

(∑n
i=1 µi

)2

∑n
i=1

µ2
i

ϕi

. (12)
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While the aforementioned assumption is not strictly true, there are certain
instances where it might be a reasonably good assumption (see above). Under
this assumption, calculated values of µ̄ and ϕ̄ can then be used to estimate the
density, distribution, and quantile functions of Y via the standard R functions
(d/p/q)nbinom().

1.4 Summary statistics

nbconv additionally contains a function that calculates the mean, variance,
skewness, and excess kurtosis of Y , as well as the mean of the mixture r.v.
K. These summary statistics can be useful when deciding which evaluation
method to use. The mean and variance of Y are defined in (10) and (11), re-
spectively. To define the skewness and excess kurtosis of Y , the third and fourth
cumulants of (4) must first be defined:

κ3 =

n∑
i=1

(2µi + ϕi)(µi + ϕi)µi

ϕ2
i

and

κ4 =

n∑
i=1

(6µ2
i + 6µiϕi + ϕ2

i )(µi + ϕi)µi

ϕ3
i

.

The skewness (γ1) and excess kurtosis (γ2) can then be defined as,

γ1 =
κ3

κ
3/2
2

(13)

and

γ2 =
κ4

κ2
2

. (14)

Finally, the mean of the mixture r.v. K follows from the fact that Y ∼
NB(ϕs +K, p1) [1]:

K̄ =
( µ̄p1

q1

)
− ϕs. (15)
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